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The method reported in this paper is a simple means by which to determine the Avrami exponent, n, after 
cooling from the molten state of semi-crystalline polymers. This determination, often drudgery, has been 
significantly simplified, yet remains satisfactorily reliable. It is based on the measurement, from an 
experimental crystallization exotherm, of the peak maximum and its inflexion points for different cooling 
rates. Results were tested against the Ozawa theory, and it was found that our method was suitable for a 
slightly filled or unfilled thermoplastic polymer. However, neither our method nor the Ozawa theory apply 
when the matrix is reinforced with an efficient nucleating agent. © 1997 Elsevier Science Ltd. All rights 
reserved. 
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I N T R O D U C T I O N  

The behaviour of thermoplastic semi-crystalline poly- 
mers during non-isothermal crystallizations from the 
molten state, is of increasing technological importance, 
because these conditions are the closest to real industrial 
processing conditions. The study of non-isothermal 
crystallization kinetics, from differential scanning calori- 
metry (d.s.c.) measurements, has been approached in a 
theoretical way by Ozawa 1. It allows the kind of 
nucleation (homogeneous or heterogeneous), and the 
growth geometry (one-, two-, or three-dimensional 
growth) to be predicted and quantified by means of  a 
factor, n, called the Avrami exponent. The Ozawa 
theory is an extension of  that of Avrami 2, which 
considers the case of isothermal crystallizations, basing 
its mathematical reasoning on an analogy with the 
propagation of  circular waves produced when rain drops 
fall on a water surface. The shock wave resulting from a 
drop fall, and the drop itself, are respectively compared 
to the growth front of the crystalline entity, and to the 
nucleation germ. Ozawa used this theory, supposing a 
constant cooling rate, and extended the mathematical 
derivation proposed by Evans 3 to the case of non- 

* T o  w h o m  c o r r e s p o n d e n c e  s h o u l d  be  add re s sed  

isothermal crystallizations. However, the theory has a 
certain number of limits. For instance, secondary 
crystallization of  the products is not taken into account, 
and the exponent n is considered to be constant whatever 
the temperature. Moreover, effects such as transcrystal- 
lization are not considered in the Ozawa theory. It so 
happens that this particular phenomenon accelerates the 
average kinetics of  transformation, and tends to make up 
for the volume restriction effects which, on the contrary, 
slow down crystallization kinetics 4. As a result, the 
Avrami exponent, n, has no physical significance any 
more when strong surface nucleation occurs, because its 
evolution involves factors with contradictory effects. 
Therefore, the way it varies when fibres or nucleating 
agents are added to the bulk polymer become problem- 
atic and not easily interpretable. 

The determination of n during cooling from the 
molten state at a constant rate, uses the following 
equation proposed by Ozawa: 

[Xv(T)]u= 1 -  exp ( K ~ ) _ )  (1) 

where Xv (T) is the volume fraction of the transformed 
polymer at a temperature T, U is the cooling rate, and 
K(T) is the so-called cooling function. The latter only 
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varies as a function of temperature. For a given tem- 
perature, it depends on the growth geometry of the crystal- 
line entities (one-, two-, or three-dimensional growth), and 
on the nucleation process (homogeneous or hetero- 
geneous). Ln K(T) is supposed to be a linear function of 
the temperature. 

It appears that in a non-isothermal process, the 
Avrami exponent may change with the crystallization 
temperature, the cooling rate and the transformed 
volume fraction. In the literature, the treatment of 
experimental results by the Ozawa method uses a linear 
relation such as 

Ln[ -  ln(1 - X v ( T ) ) ]  = I n K ( T ) - n l n U  (2) 

Equation (2) involves determining transformed 
volume fractions for different cooling rates at a given 
temperature. It appears difficult in practice to find more 
than two or three points at a particular temperature, 
because of the considerable change in the degree of 
supercooling with variations in the cooling rate. On the 
other hand, taking into account the entire crystallization 
exotherm leads to errors which are in particular due to 
the superposition of different crystallization regimes 
(primary and secondary). Indeed, at a given temperature. 
if we have a primary crystallization regime for any 
cooling rate, we will always have a secondary crystal- 
lization regime for a lower rate. As few authors consider 
only the beginning of the crystallization in order to 
obtain consistent results. So, Lopez and Wilkes 5 in the 
case of polyphenylene sulfide, use crystalline volume 
fractions lower than 0.5 in order to reduce the effect of 
spherulite impingement which decreases the crystal- 
lization rate, and therefore the value of n by changing 
the cr6ystallization mechanism. In the same way, Chabert 
et al. limit their investigation of polyamide 66 in the 
presence of glass fibres, to an exploitation of the 
beginning of the crystallization peaks (about 30°/,,) in 
order to improve their results. Monasse and coworkers 7s 
use the average value of n as observed throughout the 
crystallization temperature range. Moreover, Privalko 
and coworkers 9,m showed that incorrect measurement of 
the temperature To at the beginning of crystallization has 
a considerable effect on the calculation of Xv (T). Under 
these conditions, n is particularly affected at the 
beginning of the phenomenon. 

All these remarks support the idea that the Ozawa 
theory can only be used for temperature domains 
corresponding to the central parts of the crystallization 
thermograms. 

The method shown in the present paper allows this 
ambiguity to be excluded, and simplifies appreciably the 
determination of n. It is based on the experimental 
observation that the crystallization exotherms essentially 
have a Gaussian shape. For this reason, only the maximum 
and inflexion points of the curve need to be considered. 
This allows us to work with transformation rates where the 
impingement of the crystalline entities stays low. 

In general, the crystallization thermograms obtained 
in d.s.c, give the transformed mass fraction Xw(T) ,  by 
partial integration of the exothermal peak at a tempera- 
ture T. Therefore, such an experimental crystallization 
curve can be expressed as 

A 0 o~(Xw)t~ (3) 

where A 0 is the total area of the exothermal peak. The 

Ozawa relation (equation (2)) using a transformed 
volume fraction, it is necessary to convert, in a first 
step, Xw(T) into Xv(T). Knowing Pa, the density of the 
amorphous phase, and Pc, the density of the crystallized 
phase, XV(T/ is obtained by the following relation: 

Xw(T) pa 
Xv(T) = Pc (4) 

1 - [1 - ~ } X w ( T )  

By this operation, the original d.s.c, curve may be 
redrawn as a curve which depends on the transformed 
volume fraction. Assuming a linear dependence between 
In K(T)  versus temperature as suggested by the theory. 

LnK(T)  = aT + b (5) 

K(T)  = exp(aT) × exp(b) (6) 

It is possible to express the value of the extremum of 
the exothermal curve T m for a given cooling rate U, by 
finding the zero of the primary derivative of the peak 
equation, that is to say by resolving the following 
equation: 0(o) 

OT ~ v t :=0  (7) 

Using equation (1), the resolution of the latter 
equation leads to equation (8) 

OT ~ e x p  - = 0  (8) 

OT 2 U" O-T = 0  (9) 

From equation (6), we obtain 

OK 
OT aexp(aT + b) 10) 

and 

03 K 

=~ OT 3 

Knowing that 

K = a2 
O- ~ _  exp(aT + b) 11) 

Combining equations (9), (10) and (11) involves a 
linear relation between Tm and In U 

Tm = nln U --b (12) 
cl a 

The values of the two inflexion points are obtained 
from the solution of the secondary derivative of equation 
(7): 

o r  2 (Xv) U = 0 13) 

U " O T O T  2 ÷ ~7  ~ = 0  14) 

03K 
- a 3exp(aT + b) 

OT 3 
and • OK 02K replacing 37 and ~ by their values with 
( l O) and (11), it follows that 

15) 

equaUons 

3 
+ b ) l - u , , e x p ( a T + h ) + l  = 0  (16) 
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The two solutions may be expressed as 

T1 = n-ln g + (17) 
a a a 

T 2=  n l n u +  (18) 
a a a 

Theoretically, Tin, T1, and T2 as a function of In U are 
linear relations with the same slope i" 

RESULTS 

The exploitation of this simple calculus method of the 
Avrami exponent in non-isothermal conditions was 
carried out for an isotactic polypropylene filled or 
unfilled by glass beads or carbon black. All these fillers 
were uncoated. For such a polymer, the density of the 
amorphous phase is Pa = 0.852, and that of the crystal- 
lized phase is Pc = 0.935. The experimental curves were 
obtained with a DSC-7 Perkin-Elmer, by cooling the 
samples from the molten state, at varied cooling rates. 
Prior to this operation, the polymer was maintained for 
4min at above its melting temperature (200°C) 11, in 
order to destroy the crystallization germs initially present 
in the bulk. The cooling rates chosen for the investiga- 
tions were intentionally low. The aim of this choice was 
to limit the problems due to changes in the crystallization 
regimes. In such conditions, the crystallization takes 
place at a relatively high temperature range. Moreover, 
only the three values Tin, T1, and T2, representing the 
maximum value of the peak and the two inflexion points 
were considered on the experimental thermogram. Thus 
optimal conditions were achieved for the thermograms 
to be used according to the Ozawa theory. 

Unfilled isotactic polypropylene 
A computer program developed in the laboratory 

allows us to convert the transformed mass fraction 
Xw(T) into a transformed volume fraction Xv(T) by 
applying equation (4) to all the points of the experi- 
mental curve. By this operation, a non-isothermal 

crystallization exotherm may be represented, as in 
Figure 1. The integration of the treated peaks for the 
different cooling rates used leads to the curves giving the 
evolution of the transformation ratio as a function of the 
temperature (Figure 2). 

From the different crystallization peaks for a cooling 
rate scale between 2 and 40°C min-' ,  the values of the 
temperatures T1 (first inflexion point), Tm (maximum of 
the peak), and T2 (second inflexion point) were 
determined. According to the theory, these temperatures 
vary linearly with the cooling rate logarithm (Figure 3) 
when the latter stays low (<10°Cmin-1). Above this 
cooling rate, the values of Tl, Tm, and T2 considerably 
decrease when In U increases, because of the super- 
position of several crystallization regimes. It was 
established that under these conditions, the slopes of 
the three straight lines are identical for the low cooling 
rates. Moreover, the symmetry of the crystallization 
exotherms involves the equidistance of the straight lines. 
Therefore, in a general manner, T1, Tm, and T2 (noticed 
Tl) may be expressed as Ti = A In U + Bi. 

Considering only, for instance, 7"1 and 7"2, and 
combining the previous equation with equations (17) and 
(18), we have to resolve the following simple system: 

~n A - - z  
a 

3 - v~ ln(3 - v@~ 
In 2 b \ 3 - - T ~ J  

- B  1 ~ n = A  
a a Bi - B2 

+,/3 3 
l n - -  

2 b B2 
a a 

From the experimental results presented in Figure 3, 
obtained for unfilled polypropylene, the coefficients A, 
B1, and B2 are respectively calculated as: 

A = -5.06; B 1 = 122.7; B 2 = 119.8 

In these conditions, n is 3.3. This is close to the 
theoretical value. Indeed, a value of about 3 is 
characteristic of a heterogeneous nucleation followed 
by three-dimensional spherulitic growth. 
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Figure I Non-isothermal crystallization exotherm of the unfilled polypr0pylene for a cooling rate of 2°C min-1 
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ReinJbrced polypropylene 
It has been demonstrated *~ that, at low concentration, 

glass fillers in polypropylene are a weak nucleating agent. 
The polymer therefore behaves as if it were unfilled, and 
at least at low cooling rates (<10°Cmin-l) ,  no prefer- 
ential nucleation occurs at the filler surface. This fact is 
widely confirmed by observations in polarized light 
optical microscopy. However, at greater concentrations, 
the presence of glass fillers influences the crystallization 
behaviour of the matrix. Under these conditions, the 
crystallization exotherms obtained during cooling from 
the molten state are shifted towards higher temperatures, 
and this expresses the influence of the reinforcing 

materials on the heterogeneous nucleation of the 
polymer. This general behaviour is verified in the case 
of the materials used for our investigations. Figures 4 and 
5 represent the variations of T 1 , Tm, and T 2 as a function 
of In U for the same polypropylene, filled with 5 and 
40% of uncoated glass beads respectively. The exploita- 
tion of the experimental data for 5% glass filled 
polypropylene by the Ozawa theory according to our 
calculus method, is satisfactory for cooling rates lower 
than 10°C min -j . Within this range of cooling rates, the 
variation of TI, Tin, and T2 as a function of In U is 
always linear, and the straight lines obtained are parallel 
and equidistant (Figure 4). Applying our calculus 

Figure 2 
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method, the Avrami exponent, n, is 2. According to 
Ozawa, the considerable decrease in n is due to a more 
heterogeneous nucleation than in the case of the unfilled 
polypropylene, and to a two-dimensional growth of the 
crystalline entities. These observations tend to assign an 
important role to the glass beads in the crystallization 
behaviour of the polymer, even if this role is not clearly 
observable in optical microscopy. However, this conclu- 
sion is confirmed by the fact that the characteristic 
crystallization temperatures are consistently higher for a 
given cooling rate in the case of the reinforced 
polypropylene. 

For a sample containing a greater proportion of filler 
(40% by mass of glass beads), Figure 5 shows that the 
curves T vs In U are no longer linear, even for the low 
cooling rates. This implies that the influence of the glass 
beads has become predominant, and is therefore 
difficult to interpret by the Ozawa theory. The 
conclusions are the same if the polypropylene is 
reinforced by carbon black. It is clear that such fillers 
play a major nucleating role for this polymer, even at low 
concentrations. This is confirmed in Figure 6 where 
straight lines characteristic of the variation of TI, Tin, 
and T2 diverge considerably. 

Figure 4 
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Figure 6 
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C O N C L U S I O N S  

Crystall ization thermograms for polypropylene cooled 
from the molten state were exploited using our calculus 
method when compared against the Ozawa theory. It 
appears that the determinat ion of the max imum and of 
the inflexion points of the experimental exotherms for 
different cooling rates, is sufficient to obta in  a satisfac- 
tory correlat ion with the theory. However, the Ozawa 
hypothesis cannot  be eliminated, particularly when the 
polymer is reinforced or when there is a change in the 
crystallization regime. The great advantage of the 
calculus method is it is very simple and therefore easy 
to use. 
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